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Abstract

DNA microarray analysis is a biological technology which permits the whole genome
to be monitored simultaneously on a single slide. Microarray technology not only
opens an exciting research area for biologists, but also provides significant new
challenges to statisticians. Two very common questions in the analysis of microarray
data are, first, should we normalize arrays to remove potential systematic biases,
and if so, what normalization method should we use? Second, how should we then
implement tests of statistical significance? Straightforward and uniform answers
to these questions remain elusive. In this paper, we use a real data example to
illustrate a practical approach to addressing these questions. Our data is taken from a
DNA —protein binding microarray experiment aimed at furthering our understanding
of transcription regulation mechanisms, one of the most important issues in biology.
For the purpose of preprocessing data, we suggest looking at descriptive plots first
to decide whether we need preliminary normalization and, if so, how this should
be accomplished. For subsequent comparative inference, we recommend use of
an empirical Bayes method (the B statistic), since it performs much better than
traditional methods, such as the sample mean (M statistic) and Student’s ¢ statistic,
and it is also relatively easy to compute and explain compared to the others. The false
discovery rate (FDR) is used to evaluate the different methods, and our comparative
results lend support to our above suggestions. Copyright © 2004 John Wiley & Sons,
Ltd.
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Introduction

result, the knowledge of gene expression and tran-
scription regulation are two key questions in biol-

Biological background

Gene expression is a process of ‘the full use of
the information in a gene via transcription and
translation, leading to production of a protein and
hence the appearance of the phenotype determined
by that gene’ (Lackie and Dow, 1999). The gene
expression process determines the intracellular con-
centration of proteins, which play an important role
in many biological systems. On the other hand,
the gene expression procedure is controlled by cer-
tain proteins (regulators) in an organized way. As a
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ogy. Answers to these questions will facilitate basic
biology and medical research, leading to applica-
tions in clinical diagnosis, disease classification and
finding new treatments for diseases.

DNA microarray experimentation is a biological
technology which permits the whole genome to be
monitored on a single slide, so that a better picture
of the interaction among thousands of genes can
be observed simultaneously (Brazma et al., 2000).
As a result of microarray applications, the research
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focus of biologists has shifted from individual
genes to multiple genes, and their interaction and
cooperation in a complicated way to maintain
life. One important microarray application is to
compare the expression levels of genes in samples
drawn from different tissues or conditions through
a transcriptional profiling experiment (Tani et al.,
2002; Spellman et al., 1998). Another ingenious
application of microarray technology is to find the
DNA-binding sites for proteins across the entire
genome through a chromatin immunoprecipitation
(CHIP) experiment (Ren et al., 2000; Iyer et al.,
2001), where the interest is to detect the target
DNA sequences that are bound by specific proteins.

Statistical issues

Microarray technology not only opens an exciting
research area for biologists, it also provides sig-
nificant challenges to statisticians. A common and
difficult question before starting any data analy-
sis is whether we need to preprocess the data, and
if so how. Generally, there are some systematic
biases and variations in microarray experiments,
such as label or dye effects and slide or spa-
tial effects, which may affect the measurements
of gene expression levels, and thus the conclu-
sion of an experiment (Yang et al., 2002; Quack-
enbush, 2002). In order to remove these biases
and make the multiple arrays comparable, various
normalization methods have been proposed. For a
chromatin immunoprecipitation experiment using
genomic DNA as control samples, intensities of the
control genomic DNA samples should be around a
constant, while for a transcriptional profiling exper-
iment, the intensities in the reference channel will
have gene-specific means. This different property
may require different normalization methods. This
paper briefly describes several normalization meth-
ods and aims to provide a practical approach to
decision making in this regard. We will illustrate
our approach for both chromatin immunoprecipita-
tion and transcriptional profiling experiments.
Another challenging question is how to properly
carry out statistical data analysis. There are sev-
eral overriding statistical issues here. One has to do
with the ‘large p, small n paradigm’ (West, 2000).
Thousands of genes will be tested at the same
time, but generally we only have a few replica-
tions of each. Empirical Bayes (EB) methods pro-
vide a natural approach to addressing this problem
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because they can effectively borrow information
across genes (Efron and Morris, 1973; Carlin and
Louis, 2000), and so EB methods for microar-
ray have recently been implemented by a variety
of researchers (Newton et al., 2001, 2003, 2004;
Lonnstedt and Speed, 2002; Kendziorski et al.,
2003; Lin et al., 2003). A relevant statistical issue
is how to determine the statistical significance for
testing a null hypothesis. In many situations, it is
not straightforward to obtain the null distribution
of a chosen test statistic, so it is not easy to deter-
mine the cut-off for rejection region or p value
for the null hypothesis. However, because microar-
ray experiments are largely exploratory in nature,
investigators generally care little about precise p
values, and are willing to accept some false pos-
itives among the identified genes. Thus, the best
method is one that can lower both type I and type
II errors over a range of cut-offs (Lonnstedt and
Speed, 2002). This paper considers four traditional
or new test statistics used for microarray data anal-
ysis, especially focusing on one EB method, and
compares the methods based on plots and their false
discovery rates.

This paper is organized as follows. ‘Data and
Methods’ contains a brief description of the dataset
used in the paper, as well as the various normaliza-
tion methods, test statistics, evaluation methods and
their implementation. The ‘Results’ section then
illustrates in the context of our microarray experi-
ment; in particular, firstly, we show the effects of
normalization methods on the location and scale of
the intensity measurements. In the following sub-
section plots are used to illustrate the utility of an
empirical Bayes method and how it differs from
other methods. After that we compare the results
of using different normalization methods and statis-
tics by looking at their overlap rates of identified
genes and their false discovery rates. In the last
subsection, we apply our proposed approach to a
transcriptional profiling experiment. Finally, there
is a discussion of our findings and open questions
for future investigation.

Data and methods

Data

Data from a study of transcription regulation mech-
anisms is used in this project. The overall goal of
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the study is to find the DNA binding sites in vivo of
a broad transcription regulator, leucine responsive
regulatory protein (Lrp) (Tani et al., 2002), through
analysing the genome-wide distribution of Lrp.
Detailed descriptions of the method of genome-
wide location and function of DNA binding pro-
teins can be found elsewhere (Ren et al., 2000; Iyer
et al., 2001).

Briefly, to identify the target binding sites of Lirp,
the combination of chromatin immunoprecipitation
and microarray hybridization was used. DNA sam-
ples from wild-type Escherichia coli were labelled
with red (CyS5) fluorophore following cross-linking,
immunoprecipitation and amplification; we call
these samples ‘test samples’. Genomic DNA sam-
ples were also prepared and labelled with green
(Cy3) fluorophore; we call these samples as ‘con-
trol samples’. We identify the genomic target loci
by comparative hybridization of test and control
samples to a DNA microarray. The ratio of Cy5 to
Cy3 fluorescence intensities measured at each spot
in the microarray provided a measure of the extent
of binding of Lrp to the corresponding genomic
locus. If there is no binding of Lrp, this ratio should
be a constant across all of the genes. So the specific
purpose of this microarray analysis is to identify the
spots or genes with intensity ratios between the test
samples and the control samples that are different
from this constant. Each DNA microarray includes
4221 OREFs of E. coli. After dealing with missing
data and background correction, 4011 genes with
five replicated arrays are used to do the analysis.
In this paper, we define M;; as the log ratio of the
background-corrected intensity levels in test and
control samples for gene i on array j:

My = log, N
ij =108 Gy

(intensity level for test sample);

0
&2 (intensity level for control sample);

for i=1,...,N and j=1,...,n, where N =
4011 and n =5 in this experiment. Suppose that
@i and M; are the population and sample means
of the M, respectively. Our goal is to test the
null hypothesis Hy:u; = ¢ for each gene i, where
c is a constant across all of the genes. We can
estimate this constant by the median of the M;
for each array, which we call @ If we transform
each M;; by subtracting ¢, our null hypothesis
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becomes Hp:u; =0 for each gene i. For this
data set, we apply this transformation before any
further analysis, and do not regard this as a
normalization method.

We also define A;; as the log of geometric
mean of the two channel intensities; that is, A;; =
(log, R;j + log, G;j)/2. We denote the sample mean
of Aj by A; and will use generic notation M and
A for M; and A;.

Normalization methods

In microarray experiments, the purpose of nor-
malization is to remove the systematic varia-
tion, such as the differences in labelling effi-
ciency between two fluorescent dyes used. There
are various sources of biases, including exper-
imental variability in the processing procedures
and the scanner settings at the data collection
step. Some of these factors lead to biases that
depend on the spot’s intensity or its location on
the array, often referred to as spatial or ‘print-tip’
effects. Locally weighted smoother (lowess) nor-
malization and print-tip group lowess normaliza-
tion methods were proposed to correct these kinds
of biases (Yang et al., 2002). The lowess normal-
ization method is a within-slide location normaliza-
tion method. It assumes that the (dye) bias depends
on the spot intensity, so it adjusts the log-ratios
M;; by an intensity-dependent mean curve c(A),
the lowess fit in a scatterplot of the log-ratio M
vs. overall spot intensity A. The print-tip group
lowess normalization method assumes that there
are systematic differences between the print-tips,
so it adjusts the log-ratios by both the intensity
and print-tip effects ¢ (A), the lowess fit in an M
vs. A plot for the kth grid only. Both of these meth-
ods are used after a summary measurement of gene
intensity level [typically log (R/G)] is obtained for
two-channel arrays. Normalization can be applied
for the purpose of constructing an expression value
using physical and biological properties, as well
as for standardizing expression value for within-
and between-sample variability. The purpose of our
normalization is the latter. Irizarry er al. (2003)
address some of the normalization issues in a
coherent way.

The preceding discussion notwithstanding, the
questions of whether and how to normalize the data
do arise in practice. We address these questions
by looking at some descriptive plots. First, a
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scatterplot of M vs. A is checked for each slide to
see whether there is any systematic pattern between
the log-ratio intensity and the overall intensity; if
there is, we may need to do normalization. Then
within print-tip lowess curves are fitted for each
print-tip group and the spatial plots are checked to
see whether there are spatial effects. If the lowess
curves are different for each print-tip group and the
intensities are disproportionately distributed among
the print-tip groups, then we may need to consider
the print-tip group lowess normalization.

Test statistics

In this project, we use four different statistical
methods to analyse the data. The first one is the
M -statistic, M;, which corresponds to the early
practice of simply using twofold change as a
significance indicator. M does not take account
of possibly different variations of M;; for different
genes, and effectively it treats a highly variable
gene in the same way as a stable one. A second
possibility is the Student’s ¢ statistic, t; = M; /SE;,
where SE; is the estimated standard error of M;.
The ¢; statistic can be regarded as a standardized
version of M;.

Because we have thousands of genes but only a
small number of replicates for each gene, it is quite
possible that for some genes, just by chance, their
SE estimates (based on sample variances) can be
very small, leading to a huge ¢ statistic. In order
to address this problem, another statistic, S, was
proposed by Tusher et al. (2001). This statistic is
a modified ¢ statistic that adds a constant gy into
the denominator, i.e. S; = M;/(SE; + ag). As sug-
gested by Tusher ef al. (2001), we use the median
of standard errors of all the genes as ayg. The moti-
vation of the S -statistic is intuitive, but it does not
have a rigorous justification (although a connec-
tion exists between the §-statistic and a Bayesian-
regularized ¢ statistic; Baldi and Long, 2001).

The last method we consider is the B statistic
(Lonnstedt and Speed, 2002), which is an empirical
Bayes estimate of the log posterior odds of u; # O.
We assume that genes are independent and the
measurement M;; is a random variable from a

normal distribution with mean p; and variance crizz

M \ii, o ~ N (wi, 07)

Most genes have the same mean intensity level
between the two samples, corresponding to u; = 0.
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Only a small proportion (say, p) of genes have
different mean intensities, leading to u; # 0. An
indicator function A; is defined as O if u; = 0 and
as 1 if w; # 0. By definition and Bayes rule, we can
calculate the log posterior odds for gene i having
A,’ =1:

Pr(A; = 1|{M;})

Bi = log A = oMy )

p [[Pryla; =1)
i=1
(1 —p) [[PrMy1A; = 0)
i=1

= log

We use conjugate prior distributions for mean
wi and variance o?. For n arrays, a degrees of
freedom parameter v, and scale parameters a > 0
and ¢ > 0, we set 7, = na /2c7i2 and assume that
T; ~ Gamma (v, 1), and:

1 )~ N(@©,cna/2t) if A;=1
Wil T {:O if A; =0 (D

Because this is a conjugate prior, we can easily cal-
culate the joint distribution of {M;;, j =1, ..., n},
Wi, and 7;, and then integrate to get the marginal
distributions of Pr(M;;|A; = 1) and Pr(M;;|A; =
0). The final expression for B is then:

1
B; =log P
I —p /(1 +nc)
v+%
a+s?t+M?
X 3
2 M;
a+s;+
1+ nc

where s? is the sum of squared errors over n arrays
for gene i. From this formula, we can find that the
only gene-specific part lies in the last ratio, which
is always greater or equal to 1, since 1 +nc > 1.
Thus, we can deduce a monotonically increasing
relationship between B; and Ml.2 or relative gene
intensity levels, and the relationship is stronger if
the variance for the gene is smaller. (A similar
relationship exists between #; and M;.)

B has four hyperparameters: p, v, a and c.
Since there are no consistent estimates for them
and appropriate hyperpriors are not clear, we use
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an EB approach to estimate them. First, we fix p
and estimate v, a and c¢. The methods of moments
is used to get @ and Vv, and the least squares
method to get ¢. There are no satisfactory estimates
for p, but in most of cases that will not affect
the shape of the B vs. M plot (Lonnstedt and
Speed, 2002).

Evaluation methods

Three plots with numbers indicating whether the
genes are identified as being bound to Lrp by
different statistics are used to compare the false
positive and false negative rates among the M, ¢
and B statistics: average M vs. variance of M, ¢
vs. average intensity A, and B vs. M. The over-
lap rates of top genes identified by different nor-
malization methods and statistics are calculated
to indicate the agreement between two different
methods. The higher the overlap rate between two
methods, the better agreement between them. We
also use the false discovery rate (Efron et al.,
2001; Benjamini and Hochberg, 1995) to com-
pare the three normalization methods and the
four statistics. FDR is an alternative to control-
ling the false positive rate (type I error), and is
defined as the expected proportion of false posi-
tive genes (FP) among total positive genes (TP);
the observed FP:TP ratio is often used to esti-
mate FDR. When we use FDR to compare var-
ious statistical methods, we prefer the method
that gives the lowest FDR while giving the same
number of top (i.e. positive) genes as that of all
other methods.

Implementation

We implemented the methods in the R software
package (www.r-project.org). In particular, we
used the SMA (Statistics for Microarray Analysis)
package developed by Dudoit ef al. (2002) (stat-
www.berkeley.edu/users/sandrine/software.
html). We used SMA to do lowess normalization
and print-tip group normalization, creating the M
vs. A plots, boxplots and spatial plots, and calcu-
lating B statistics.

To calculate FDR, we used a permutation method
to estimate the false positive number FP (Tusher
et al., 2001). Under the null hypothesis, Hy:p; = 0,
we can generate a permuted dataset as follows:
multiplying each M;; by either 1 or —1 randomly.

Copyright © 2004 John Wiley & Sons, Ltd.
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For example, suppose that the original parameters
M;; for gene i are: 0.2, 0.4, —0.3, —0.5, 0.1. We
generated five random numbers, say, —1, 1, —1, 1,
—1. Then our permuted data will be: —0.2, 0.4, 0.3,
—0.5, —0.1. We do this permutation 50 times for
each genes. The false positive number from each
permutation is the number of genes that counted as
significant genes from the permuted data. The aver-
age of the false positive numbers over 50 permuta-
tions is calculated as FP. The number of genes that
counted as significant genes from the original data
is regarded as TP, and we estimate FDR = FP/TP
(Pan, 2003). Note that a more elaborate estimator
of FDR, namely FDR = moFP /TP, with g as the
prior probability of null hypothesis being true, has
been proposed (Storey and Tibshirani, 2003). Since
7o is a constant, independent of whatever normal-
ization or test statistic is used, using this estimator
will not influence our final results.

Results

Effects of normalization

M vs. A plots, spatial plots, and boxplots of the
measurements in the first slide are displayed to
compare the within-slide normalization methods;
the corresponding plots for the other four slides are
similar. Figure 1 shows that, before normalization,
the intensity ratio increases as the average intensity
increases, possibly indicating a systematic pattern.
After the lowess normalization, this pattern disap-
pears. Figure 2 displays 16 within-print-tip lowess
lines, one for each print-tip group. This plot may
indicate the existence of spatial effects, since six
lowess curves seem to stand out from each other.

Figure 3 shows a spatial plot. There are dispro-
portionately large numbers of extreme log-ratios in
the upper four grids if we do not use any normal-
ization method, possibly indicating spatial effects
for the experiment and the need for within-print-
tip group lowess location normalization. Finally,
the within-print-tip boxplots in Figure 4 also indi-
cate that both the mean and variances are different
among the 16 print-tip groups. After within-print-
tip group lowess normalization, the mean of log-
ratio of each print-tip group is adjusted to zero. So
we may conclude from these plots that there seem
to be spatial effects and we need to use the print-tip
group normalization.

Comp Funct Genom 2004; 5: 432—444.
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Figure 1. M vs. A plots under (a) no normalization and (b) lowess normalization for slide | with lowess curves
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Figure 2. M vs. A plot with 16 individual lowess smoothing lines superimposed, one for each print-tip group in slide |
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Figure 3. Spatial plots of slide I, highlighting the spots with 5% extreme log-ratio intensities prior to normalization. Each
rectangular represents the log-ratio of a spot on the array. The dark rectangular represents positive log-ratios and the light
rectangular represents negative log-ratios
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Figure 4. Boxplots displaying (a) the log-ratio distribution after lowess normalization, and (b) within-print-tip group lowess
normalization for each of the 16 print-tip groups. The array was printed using a 4 x 4 set of print-tips

Copyright © 2004 John Wiley & Sons, Ltd.

Comp Funct Genom 2004; 5: 432—444.



Choosing normalization methods and test statistics

Effects of using various statistics

In this subsection, we illustrate the utility of B
and how it differs from M and ¢, based on plots
following the idea of Lonnstedt and Speed (2002).
Corresponding illustration of the S statistic can
be found elsewhere (Tusher et al., 2001; Efron
et al., 2000).

All statistics were calculated after applying the
print-tip group normalization method to the data.
The various plots relating the statistics M, ¢t and
B are shown in Figure 5. Genes that are identified
as ‘extreme’ by at least one of these three statistics
are plotted not as dots but as numbers in this figure;
Table 1 provides the key to identifying to which of
the 2° — 1 = 7 possible sets these extreme genes
belong. We selected the cut-off points so that each
statistic will identify its top 150 genes as being
extreme. Specifically, the genes are selected as
extreme for M if |M;| > 1.43, for ¢ if |t;| > 4.62,

Average M vs Variance

1 2 3 4 5
I I

0
I

-1

-2
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Table I. Number of genes falling in the corresponding sets,
I-7. In columns 2—-4, a ‘I’ indicates that the genes in this
set are ‘extreme’ for the given statistic

Extreme for

Number of

Set M t B genes in set
| 0 0 I 48
2 0 | 0 91
3 0 | | 41
4 | 0 0 89
5 I 0 | 43
6 | | 0 0
7 | | | 17

and for B if B; > —2.11. After setting these cut-off
points, all of the seven possible sets in Table 1 are
non-empty except Set 6.

From the M mean vs. log variance plot in
Figure 5, we see that at the left end of the plot, the

tvs average A

0 10 20 30 40

-20
I

- 7
7
o
GgS;g 5
~— 3 55 5
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c}l . §55
m %4 4
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- 4 4 4
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- 4
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4%
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Figure 5. Lrp data for different statistics. The three plots are sample mean of M vs. its sample variance, t vs. average
intensity A, and B vs. M. When the plotting character is a number from | to 7, this indicates whether the gene is identified
as extreme by M, t, B, or some combination thereof (see Table | for key)
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genes have very small variance and their means
are not large. Almost all of these genes fall into
Set 2; i.e. the genes are identified only by ¢ but
not by M and B statistics, which is consistent with
our previous description of ¢: it can be inflated by
a small variance. It is likely that these genes are
false positives from using the ¢ statistic.

It is reassuring to see that these genes are not
identified by the B statistic. When we look at the
right end of the M vs. log variance plot, some
genes have a large mean but their variances are
also large. All of these genes fall into Set 4; i.e. the
genes are identified only by M but not by ¢ and B.
This phenomenon is consistent with our previous
description of M : a large M does not take account
of its possibly large variation. We may consider
these genes as false positives from using M .

The ¢ vs. A plot indicates that most of the genes
with extreme ¢ values fall into Set 2 and are not
identified by M and B, while the B vs. M plot
shows that the genes with extreme B values fall
into Set 7; that is, these genes are identified by all
of M, t and B. Most of the genes falling in Set 1
that are identified only by B have only moderately
high B values. Hence it appears that B is more
stable and reliable than ¢. Set 7 includes the genes
with high values for all the three statistics, and this
shows up clearly in the plots. Set 3 can be detected
by ¢ and B, but not by M. Set 1 and Set 5 can
be detected by B, but not by ¢. Set 6 is the set of
genes that can be detected by M and ¢ but not by
B. We note that the number of genes falling into
Sets 1, 3, and 5 are between 40 and 50, but there
are no genes falling into Set 6, which confirms that
the genes high in both M and ¢ are also high in B.

Y. Xie et al.

the agreement among these statistics. The results
are consistent across normalization method: the
overlap rates among M, ¢t and S statistics are below
50%, but there is more than an 80% overlap rate
between S and B. This appears related to the fact
that both B and § can be justified from a Bayesian
point of view.

Table 3 compares estimated FDRs for the genes
identified as extreme by the four statistics before
and after applying two normalization methods.
The FDRs for non-normalized data are in the
range 70—80% for the various statistics, while this
range for the lowess normalization is 30-56%, and
just 17-43% for the print-tip group normalization
method. When we compare the FDRs for each test
statistic using the same normalization method, we
find that M always has the highest FDR, and the
FDR for ¢ is also rather high. By contrast, the B
statistic has the lowest FDR, with the S statistic
close behind. Since B with print-tip normalization
offers the lowest FDR (17%), we conclude that for
this dataset, preprocessing to account for spatial
effects and subsequent use of the B statistic is the
best approach.

Application to transcription profiling data

To assess the performance and versatility of our
approach, we also applied it to a transcription

Table 3. False discovery rates for the identified genes by
statistic and normalization method

Normalization method

None Lowess Print-tip
Evaluation of both normalization methods and M 086 056 043
test statistics t 071 043 035
S 0.72 0.33 0.22
Table 2 shows the overlap rates of the top 150 3 069 0.30 0.17
genes identified by different statistics to compare
Table 2. Overlap rates of the genes identified as extreme by the various statistics based on three different
normalization methods
None Lowess Print-tip
M t S B M S B M t S B
M 1.00 0.15 043 0.46 1.00 0.07 0.31 0.33 1.00 0.1 0.39 040
t 1.00 041 0.38 1.00 0.35 0.39 1.00 0.42 0.39
S 1.00 0.85 1.00 0.82 1.00 0.85
B 1.00 1.00 1.00

Copyright © 2004 John Wiley & Sons, Ltd.
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profiling dataset. Transcriptional profiling was car-
ried out to comprehensively define a family of
genes whose transcription depends on the activ-
ity of leucine-responsive regulatory protein, Lrp.
Specifically, researchers set out to identify genes
differentially expressed in Lrp* and Lrp~ strains.
Two-colour hybridization of the cDNA microar-
ray, as described in Tani er al. (2002), was used
in the experiment. Here we use six arrays of
4281 genes each to illustrate our proposed pro-
cedure of selecting normalization methods and
test statistics.

Figure 6 displays 16 within-print-tip lowess lines
for the Lrp expression data. From this plot, we
can see that there is no obvious pattern between

Table 4. For Lrp expression data: false discovery rates for
the identified genes by statistic and normalization method

Normalization method

441

intensity ratio and average intensity, and the 16
lowess curves seem to stay close to each other,
indicating that no spatial effects exist and hence
any normalization (especially the within print-tip
normalization) may not help much. Table 4 com-
pares estimated FDRs for the top 150 genes identi-
fied by the four statistics before and after applying
lowess and within print-tip normalization methods.
As expected from Figure 6, the normalization does
not have much effect on the FDR, and lowess
normalization seems to be slightly better than no
normalization and within-print-tip normalization.
When we compare the four statistics, we find that
M always has the highest FDR and the other three
statistics, ¢, S and B, have much lower FDR, with
B having consistently the lowest FDR among these
four. So, based on the plot and FDR, we conclude
that for this dataset, normalization does not have
much effect on results, and the B statistic seems to
offer the best approach.

None Lowess Print-tip
M 0.171 0.162 016y ~ Discussion
t 0.039 0.032 0.039 . .
s 0031 0032 003! In this paper, we have compared three normaliza-
B 0019 0010 0019 tion methods and four test statistics to identify tar-
get genes bound by a protein called Lrp. Different
<4
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=
© o
o
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o
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Figure 6. For Lrp expression data: M vs. A plot with 16 individual lowess smoothing lines superimposed, one for each

print-tip group in slide |
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normalization methods were developed to reduce
the systematic biases and variations across microar-
ray experiments. Before doing any data analysis,
we must decide whether we need to normalize the
data, and if so which normalization method to use.
Here we have illustrated the preliminary use of M
vs. A plots, spatial plots and boxplots to decide
whether there are any patterns between M and A
and whether there are spatial effects. If so, normal-
ization is needed, with the print-tip group normal-
ization method being most appropriate if there is
evidence of a within-tip spatial effect. This should
also result in a reduction of the false discovery rate
in subsequent analysis. For our data, both method-
ologies (plot inspection and FDR calculation) point
to the use of print-tip group normalization being
preferable. Hence, we suggest preliminary explo-
ration of the various descriptive plots discussed
to guide selection of the appropriate normaliza-
tion method.

Although this suggestion is practical and easy to
use, some concerns about normalization still linger.
Because normalization methods assume that the
mean log ratio intensity for each slide is close to
zero, there should be a small proportion of genes
with different intensities. But it can be difficult to
check whether a dataset satisfies these assumptions,
and whether the normalization methods will still
work if the data violate the assumptions. If not,
can more robust methods be found? Tseng et al.
(2001) suggested a rank invariant method and
Reilly et al. (2003) proposed probability models fit
using the Gibbs sampler (see e.g. Carlin and Louis,
2000) to select non-differentially expressed genes
to do normalization. ANOVA methods proposed
by Kerr et al. (2000) are also widely used in
normalization and testing for microarray data. One
might also compare ANOVA methods with these
other methods to see how they perform.

The B statistic uses information from all the
genes to estimate the posterior odds of rejecting
the null hypothesis. Although the normality and
independence assumptions were used to derive
the formula for B, we did not use a formal
test based on these assumptions. Furthermore, the
conclusion of ‘extremeness’ for a gene is often
based solely on the rank of its test statistic.
Because we cannot estimate the prior probability
of extremeness satisfactorily and the scale of B
depends on this probability, we cannot use a
predetermined cutoff value (such as B =0) for

Copyright © 2004 John Wiley & Sons, Ltd.
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gene selection. Fortunately, the ranks of the various
B statistics do not depend on p, so we can select
the top genes with the most extreme B values
based on their ranks. Based on the analysis results
for the Lrp data, we conclude that the B statistic
performs much better than the M and ¢ statistics,
since B yields much smaller false positive rates
than the other two. The performance of B, in
terms of the overlap rate and false discovery rate,
is quite similar to that of S, but the former is
more explicitly model-based. Also, because B has
a closed form, it is easy to compute and convenient
to use (e.g. it is directly available within the SMA
package). Hence, we conclude that, although the
M and t statistics are the most commonly used
statistics for microarray data analysis, based on our
results, we instead recommend the B statistic. It
will be interesting to see whether the B statistic can
be incorporated into other statistical packages and
applications in the detection of differential gene
expression (Pan, 2002; Kendziorski et al., 2003;
Newton and Kendziorski, 2003).

In this paper, we used the FDR results from the
top 150 identified genes to compare the different
methods. In order to check whether the results are
sensitive to the number of genes so selected, we
repeated our analysis using different cut-off points;
specifically, using the top 20, 50 and 200 identi-
fied genes. The results were consistent with our
previous findings: the FDR was highest for non-
normalization and lowest for print-tip normaliza-
tion, and the B and S statistics have lower FDRs
than M and ¢. Thus, our results appear robust with
respect to the choice of extremeness cut-off point.

Our data analysis followed the common approach
of using background subtracted measurement inten-
sity. But Kooperberg er al. (2002) pointed out that
this method may lead to a much larger variance
than needed when the expression levels are low.
Qin and Kerr (2003) also showed that background
subtraction can increase the variability of gene
expression and worsens one’s ability to detect the
expressed genes. To investigate this issue in our
setting, we redid our analyses without background
subtraction. Our results were again consistent with
our previous conclusions: print-tip normalization
and the B statistic enjoy the best FDR perfor-
mance. We also found that the FDR is consistently
lower when using data without background sub-
traction across different normalization methods and
test statistics. Thus, based on our results, avoiding
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background subtraction seems preferable, but fur-
ther investigation is needed.

Although there exists some distinction between
chromatin immunoprecipitation experiment with
genomic DNA as controls and the usual cDNA
transcriptional profiling experiment; the copy num-
ber of genomic DNA is fixed across the microar-
ray, which is not true for a transcriptional profiling
experiment. In our chromatin immunoprecipitation
data, we assume that most of genes are not the
binding targets of Lrp and, after the transformation
(subtracting the median of intensity ratio), the null
hypothesis is that the intensity ratio from two chan-
nels should be zero. For our transcriptional profil-
ing experiment, we also assume that there is only a
small number of genes expressing differently, and
the null hypothesis is again that the intensity ratio
from two channel should be zero. These common
properties between two different types of experi-
ments make us think that similar analysis methods,
including normalization and testing methods, may
apply to both of these experiments. Our results
for both the chromatin immunoprecipitation exper-
iment and the transcriptional profiling experiment
are consistent; inspecting the descriptive plots is
helpful in choosing the normalization method, and
the B statistic is consistently better than the M and
¢t statistics in the sense of lowering the FDR.
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